Multi-Dimensional Description of Ion-Driven Instabilities in the Inner Heliosphere

Mihailo M. Martinović, Kristopher G. Klein

Tereza Durovčova, Benjamin L. Alterman

University of Arizona

Objectives

- Intent Provide a comprehensive description of linear kinetic plasma instabilities in the inner helisophere
 - Determine stability of measured Velocity Distribution Function (VDFs)
 - Describe intensities and types of instabilities throughout both physical and phase space
- Why? Determine which physical quantities tailor the solar wind dynamic behavior
 - Find how various instabilities tend to reshape the VDF
 - Estimate the levels of the energy "returned" from particles to waves as a complementary process to solar wind heating

Outline

Outline

• Part I - Statistical Analysis of Helios observations

- Analyze linear stability of ${\sim}1.5$ M VDFs observed by Helios I & II
- Understand the behavior of unstable modes with regard to various plasma and spatial parameters
 - and instrumental effects too
- Part II Map the important physical processes acting in different conditions in the solar wind
 - Train Stability Analysis Vitalizing Instability Classification (SAVIC) algorithm to recognize the instability types in a automatized fashion
 - Use SAVIC to sort the multidimensional phase space of VDF and instability parameters to reveal trends in the solar wind
- Part III SAVIC resources and short tutorial
 - SAVIC makes the power of complicated solvers accessible to a wide community of users who are not necessarily experts in linear instabilities

Part I

Part I - Stability analysis of *Helios* observations survey

Martinović et al

Instabilities in the Inner Heliosphere

July 27, 2023 4 / 30

A (10) A (10)

Helios Observations of VDFs

- Helios I (1974 1985) & II (1975 - 1980)
 - 0.3 1 au; 6 month periods
 - 40s cadence; \sim 1.5M observations
- Three populations fitted as anisotropic drifting Maxwellians [Ďurovcová et al., 2019]
 - proton core
 - proton beam
 - α particles

Analysis of Plasma Stability Applied to Helios Observations

- PLUME dispersion solver [Klein and Howes, 2015] predicts wave modes $det[\mathcal{D}(\omega, k, \mathcal{P})] = 0$
- PLUMAGE [Klein et al., 2017] numerically evaluates contour integral

$$W_n(\mathsf{k},\mathcal{P}) = \frac{1}{2\pi i} \oint \frac{\mathrm{d}\omega}{det[\mathcal{D}(\omega,\mathsf{k},\mathcal{P})]}$$

$$\mathcal{P}_{0} = \left(\beta_{\parallel,c}, \frac{v_{the\parallel,c}}{c}\right); \quad \mathcal{P}_{j} = \left(\frac{n_{j}}{n_{c}}, \frac{T_{\perp,j}}{T_{\parallel,j}}, \frac{T_{\parallel,j}}{T_{\parallel,c}}, \frac{\Delta v_{j,c}}{v_{Ac}}, \frac{m_{j}}{m_{p}}, \frac{q_{j}}{q_{p}}\right)$$
(1)

- For each Most Unstable Mode (MUM), we find
 - frequency $\omega_r + i\gamma$
 - $\bullet~$ wavenumber $k_{\rm max}$
 - field fluctuations $\delta \mathsf{B}, \delta \mathsf{E}$

- and for each population
 - power emitted (absorbed) P_j
 - parameter fluctuations $\delta n, \delta v_j$
- $\bullet\,$ and set label ${\cal W}$ for PLUME output

Instabilities in the Inner Heliosphere

July 27, 2023 6 / 30

First Look at the Results - Something is Off...

- Results are Classified by Coulomb Number N_{C(cc)} = ν_{cc}r/v_{sw,c}
- Every subset is shown separately in panels d1-d4
- A "steady state" for the emitting population is reached very early in the solar wind propagation
 - a very suspicious result
 - we investigate 77,000 intervals in grey shade

< 4 ₽ > <

Digression - Beam Detection on Helios I1

- Beam can be mistaken as part of the core due to 11 instrument limited resolution
 - the issue is emphasized for low drifts (older wind far from the Sun)
- We indroduce "effective" core

$$T_{\text{eff}\parallel,b} = T_{\parallel,b} + \frac{m_p(\Delta v_{b,c})^2}{2k_b}$$

$$T_{\text{eff}\parallel} = \frac{n_c \, r_{\parallel,c} + n_b \, r_{\text{eff}\parallel,b}}{n_c + n_b},$$

- Two possible scenarios
 - Beam not detected: $T_{\parallel,c}$ increases
 - Beam partially detected: artificially increased beam anisotropy seen as highly unstable

Martinović et al

July 27, 2023 8 / 30

Second Look at the Results - With More Clarity

- Beam stability trends are not reliable for old wind $\begin{pmatrix} 10^{5} \\ 10^{1} \\ 10^{1} \end{pmatrix}$
- Fraction of emitted energy can be *absorbed* by another component (e)
- More than one component can emit power at the same time (f)
- Core free energy dominates the young solar wind *(d)*

Solar Wind Instability Statistics

- Radial trend is linear
- Speed and Coulomb Number trends are exponential
- proton core (beam, α) dominantly drives instabilities in collisionally young (intermediate, old) wind
- Beams—seemingly not strongly affected by collisions—carry more free energy in older wind

Part II

Part II - Characterisation and Multidimensional Mapping of Plasma Instabilities

Martinović et al

Instabilities in the Inner Heliosphere

July 27, 2023

Towards Mapping of Plasma Instabilities

 This task is straight-forward only for a single (core) population

12 / 30

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Understanding Multi-Dimensional Phase Space - Introducing Machine Learning

$ullet$ The number of ${\mathcal P}$ and ${\mathcal W}$ parameters	Components	$\# \mathcal{P}$	$\# \mathcal{W}$	
increases with number of identified	С	5	20	
components	CB	9	25	
 some may vary up to 4 orders of 	Clpha	9	25	
magnitude	CBlpha	13	30	

• Major problem 1: Tabulation of ${\mathcal W}$ for all feasible ${\mathcal P}s$ is not possible

$$\mathcal{P} = \left(\beta_{\parallel,c}, \frac{v_{the\parallel,c}}{c}, \frac{n_j}{n_c}, \frac{T_{\perp,j}}{T_{\parallel,j}}, \frac{T_{\parallel,j}}{T_{\parallel,c}}, \frac{\Delta v_{j,c}}{v_{Ac}}, \frac{m_j}{m_p}, \frac{q_j}{q_p}\right)$$
(4)

$$\mathcal{W} = (\omega_r, \gamma, \mathsf{k}_{\max}, \delta \mathsf{B}, \delta \mathsf{E}, P_j, \delta n, \delta \mathsf{v}_j)$$
(5)

- Major problem 2: Even if Problem 1 was resolves, extracting a complete set of conclusions about all aspects of underlying physics from 30+ dimensional data set is not realistic
 - We turn to Machine Learning (ML) for additional insight

Martinović et al

Instabilities in the Inner Heliosphere

July 27, 2023 13 / 30

SAVIC Software Setup

- We train Stability Analysis Vitalizing Instability Classification SAVIC chain of Machine Learning Algorithms that
 - Predict if a given VDF is stable (95.5 99.9%) SAVIC-P
 - Quantify the instability parameters (92.1 98.9%) SAVIC-Q
 - Cluster into groups that represent different types of instabilities SAVIC-C

SAVIC-P - Predicting Stability

- Every subset of data works on its own classifier that determines of the VDf is stable or unstable
 - Accuracy varies between 96.1 -99.9%
- Using parametric curves for core instabilities *decreases* precision of SAVIC-P

3

15 / 30

SAVIC-Q - Quantifying Instability Parameters

- Every subset (except C) of data has an additional classifier that predicts:
 - which mode emits energy (C, B, α, or any combination of the three)
 - angle of propagation k_{\max} and the magnetic field
- some groups do not have statistically meaningful number of intervals, and cannot train a follow-up W regressor

		cl	assificatio	on (95.03%	%)		
$C+B+k_{\perp})$	48	5	1	29	4	8	- 10000
(C+B+k	0	3436	1	236	2	101	- 8000
diues C+B-k⊥)	0	4	67	16	6	7	- 6000
(C+B-k	- 8	186	1	10591	11	88	- 4000
$(C-B+k_{\perp})$	- 5	8	1	27	2152	111	- 2000
(C-B+k1)	4	90	2	43	76	4363	0
	$(C+B+k_{\perp})$	C+B+k)	(C+B-k⊥ predicte	C+B-k _∥) d values	(C-B+k⊥)	(C-B+k)	-0

SAVIC

SAVIC-Q - Quantifying Instability Parameters

 Some of the regressors, such as CB C+B- are trained from two groups, using wider parameter range

Set	max	groups	reg
С	2	1	1
CB	6	6	4
$C\alpha$	6	6	4
$CB\alpha$	14	8	8

SAVIC-C - Classifying Unstable Modes

- \mathcal{P} and \mathcal{W} (obtained either from PLUMAGE or SAVIC) describe predicted unstable modes, but are just sets of numbers
- Understating the type of instability in question requires understating subtitles of linear theory and a "trained eye"
- For the first time, we automatize the unstable mode detection recognizing from the textbook lists of linear instabilities
- This new feature enables us to follow *not statistical, but physical* trends in the inner heliosphere

	С	СВ	$C\alpha$	$CB\alpha$
# Clusters	4	8	6	12

SAVIC Software Overview

- SAVIC automatically recognizes subsets within the input files and assigns adequate processing chains
- The code is able to process millions of intervals in seconds SAVIC performance test (desktop) 10^{2} 10^{1} time [s] 10^{0} 10^{2} 103 104 105 106 107 intervals

Martinović et al

Instabilities in the Inner Heliosphere

July 27, 2023 19 / 30

Core + Beam Results

- Sorting by Coulomb number gives expected core to beam transition
 - energy emitted by the core dominates / notably contributes to modes in the young wind
- Parallel (oblique) beam-induced modes are mostly caused by beam anisotropy (drift)
 - at specific drift values, core can absorb part of the energy emitted by the beam
- Old wind (low densities, low drifts) tests limits of Helios instrumentation

Martinović et al

$\mathsf{Core} + \alpha \; \mathsf{Results}$

- 6 clusters instead of 8, α fitted as single Maxwellian - oblique modes are rare
- Green: About a third of the parallel modes are FMs induced by the excess parallel pressure of the α component
- Dark blue: Identified CGL
 Firehose can come from undetected beams and increased
 T_{eff}
- Light green: Core protons close to FH threshold but are anisotropic enough to resonate with mildly drifted αs

Martinović et al

$\mathsf{Core} + \mathsf{Beam} + \alpha \; \mathsf{Results}$

- *Bright purple:* Non-negligible mirror mode
 - sampled in younger wind with high anisotropy
- *Reds:* Beams maintain constant contribution to instability distribution
 - drift makes beams less prone to collisions compared to ${\rm C}\alpha$
- Purples: Oblique FM is still present in the old wind
- Grey: Notably lower abundance of Firehose instabilities compared to Cα - predicted due to undetected beams

Instabilities in the Inner Heliosphere

Exploring \mathcal{P} - \mathcal{W} "Multiverse" — Oblique Fast Mode

- Oblique Fast Mode (OFM) remains ubiquitous and becomes MUM when other sources of free energy are exhausted
- OFM ensures $\Delta v_b/v_A
 ightarrow 1$
 - as $v_A \sim r^{-0.65}$, beam drifts of $\sim v_A$ are constantly marginally (un)stable—OFM constantly reduces drift to subafvénic value

Exploring \mathcal{P} - \mathcal{W} "Multiverse" — Emitted Power

- We group 12 CB α clusters in 5 categories
 - The beams seem to emit the most power *per interval*
 - However, the core IC instability is ubiquitous in the young wind - it determines the total emitted power
 - deviations of $\gamma_{\rm max}$ are very large - individual cases can significantly defer from overall statistical description

Part III

Part III - SAVIC resources -Access and Usage

Martinović et al

Instabilities in the Inner Heliosphere

July 27, 2023

25 / 30

How to Use SAVIC? User's Approach

• Short way to use it (works as well as the long way):

- 1) pip install savic
- 2) from savic import SAVIC
- 3) SAVIC.SAVIC(<your_input_file>)
- that's all!

	beta_par_core	alph_c	tau_b	alph_b	D_b	vv_b	unstable	group	Pow_core	Pow_beam	kB_angle	ins_type
0	1.0	1.0	NaN	NaN	NaN	NaN	False	NaN	NaN	NaN	NaN	NaN
1	0.5	3.2	NaN	NaN	NaN	NaN	True	NaN	0.171887	NaN	0.001113	Ion Cyclotron
2	1.0	0.4	NaN	NaN	NaN	NaN	True	NaN	0.000287	NaN	0.002231	Parallel Firehose
3	12.0	1.2	NaN	NaN	NaN	NaN	True	NaN	0.001800	NaN	0.001649	Ion Cyclotron
4	1.0	1.0	1.0	1.0	0.05	0.5	False	NaN	NaN	NaN	NaN	NaN
5	1.5	2.5	8.0	1.0	0.05	0.5	True	3.0	0.193271	0.000000	0.004137	IC (B), unstable core
6	0.5	1.0	1.0	3.5	0.10	1.5	True	5.0	0.000000	0.123028	0.003983	IC (B); $T_{\perp}/T_{ } > 1$
7	0.8	1.1	1.0	1.2	0.05	1.8	True	5.0	0.000000	0.004923	0.001414	IC (B); $T_{\perp}/T_{\parallel} > 1$
8	0.5	0.7	0.8	0.8	0.01	0.2	False	NaN	NaN	NaN	NaN	NaN

So, what happens in the background?

How to Use SAVIC? More Details

- SAVIC sort the input and calls one of the four chains:
 - SAVIC_Core, SAVIC_CoreBeam, SAVIC_CoreAlpha, SAVIC_CoreBeamAlpha
 - Each chain calls its own versions of SAVIC-P, SAVIC-Q, and SAVIC-C
- Each sub-algorithm has its own internal input and output and can be called separately if needed
- Each sub-algorithm contributes to the final output

	beta_par_core	alph_c	tau_b	alph_b	D_b	vv_b	unstable	group	Pow_core	Pow_beam	kB_angle	ins_type
0	1.0	1.0	NaN	NaN	NaN	NaN	False	NaN	NaN	NaN	NaN	NaN
1	0.5	3.2	NaN	NaN	NaN	NaN	True	NaN	0.171887	NaN	0.001113	Ion Cyclotron
2	1.0	0.4	NaN	NaN	NaN	NaN	True	NaN	0.000287	NaN	0.002231	Parallel Firehose
3	12.0	1.2	NaN	NaN	NaN	NaN	True	NaN	0.001800	NaN	0.001649	Ion Cyclotron
4	1.0	1.0	1.0	1.0	0.05	0.5	False	NaN	NaN	NaN	NaN	NaN
5	1.5	2.5	0.8	1.0	0.05	0.5	True	3.0	0.193271	0.000000	0.004137	IC (B), unstable core
6	0.5	1.0	1.0	3.5	0.10	1.5	True	5.0	0.000000	0.123028	0.003983	IC (B); $T_{\perp}/T_{\parallel} > 1$
7	0.8	1.1	1.0	1.2	0.05	1.8	True	5.0	0.000000	0.004923	0.001414	IC (B); $T_{\perp}/T_{ } > 1$
8	0.5	0.7	0.8	0.8	0.01	0.2	False	NaN	NaN	NaN	NaN	NaN
		inp	ut da	ta		S	AVIC-F	D	SA	VIC-Q	_	SAVIC-C
	Martinović e	t al		1	nstab	oilities	in the I	nner H	Heliospher	re	Ju	ıly 27, 2023

How to Use SAVIC? For Developers

Lypiore	Jupy		reboo	JKS
Contraction and			Q. Lya	1 + 0 n a 🚭
SANK THE				
		Grade Autor 10 Gales		
💮 Ministerio a spare and a				

Explore Junytor Notobooks

Download the Source Code

Zenodo 📼 🔹		 Investigated assession
AVE BD	fallens (per bana)	9101
SAVIC		No. 4000
Malakarawan Enterprotection Enterprotection Enterprotection Enterprotection Enterprotection Educ Saddly only induce presidy Sandheten		7 O American Increased
Peologie pp michaels Peologie Michael (112)	×	GitHub
Date, Sectory m District of the sectory m District C, sector symmetry District C, sector symmetry District C, sector symmetry District C, sector symmetry District C, sector sectory District C, sector sectory	64.0 all 34.7 all 24.3 all 35.7 all 63.7 all 63.7 all 64.1 all	OpenAIRE

Explore Version History

🥔 Seerthonijeze	Q, inde Laurum kegin kegnar
savic 1.0.2	C and and a 10 (2011
MiC palage	
Kanipalaan E. Project description	Release history tessecontaries technick
Pressure transy	10.3 Add, md
Project Salar	10.1 Accument

Read detailed documentation

SAVIC	# / Welcome to SAVIC documentation?	O Edit on GitHub
rthako	Welcome to SAVIC documentation	
	Welcome to overto documentation.	
		Next O
	© Convertent 2023 Mihailo Martinenie: Beninine 15a11984	
	Built with Sphinx using a theme provided by Brad the Docs.	
	one meridian and a second branches of response costs.	

July 27, 2023

Conclusions

- Stability analysis of \sim 1.5M of Helios VDF measurement reveals *linear* trends with radial distance in both occurrence rate and intensity, while the trends are *exponential* with Coulomb number
- We are able, for the first time, to provide a comprehensive mapping of solar wins instabilities using ML algorithms
- Young solar wind plasma emits unstable waves mostly due to proton *core* anisotropy; proton *beam* and α particles are more important in the older solar wind
- Beam stability is less affected by collisions than other components
- Oblique Fast Mode acts as a "guardian" of the beam drift stability
 - this mode is probably dominant in 2-4 AU range

29 / 30

A (1) < A (2) </p>

Public Repository Info

Article I in *ApJ* [Martinović et al., 2021]

Article II in ApJ

[Martinović and Klein, 2023]

SAVIC code on *GitHub*

SAVIC Python Package on *PiPy*

SAVIC Tutorial on *ReadTheDocs*

SAVIC Zenodo Release

Martinović et al

Instabilities in the Inner Heliosphere

July 27, 2023 30 / 30

THANK YOU

Martinović et al

Instabilities in the Inner Heliosphere

July 27, 2023

Milunka Savić (1889 - 1973)

- Volunteered for World War I, disguised as a man
- First exception to send a women to the front lines
 - after being awarded Karadorde star in hospital
- Moved on to become the most decorated female warrior in history

- Declined French military pension to stay in Serbia
 - Raised over 30 wartime orphans and children from her home village
- SAVIC code went public 50 years after Milunka's death

Klein, K. G. and Howes, G. G. (2015).

Predicted impacts of proton temperature anisotropy on solar wind turbulence.

Physics of Plasmas, 22(3):032903.

Klein, K. G., Kasper, J. C., Korreck, K. E., and Stevens, M. L. (2017). Applying Nyquist's method for stability determination to solar wind observations.

Journal of Geophysical Research (Space Physics), 122(10):9815–9823.

Martinović, M. M. and Klein, K. G. (2023). Ion-Driven Instabilities in the Inner Heliosphere II: Interaction with Collisions.

The Astrophysical Journal, accepted.

 Martinović, M. M., Klein, K. G., Ďurovcová, T., and Alterman, B. L. (2021).
 Ion-driven Instabilities in the Inner Heliosphere. I. Statistical Trends. *The Astrophysical Journal*, 923(1):116.

July 27, 2023 32 / 30

Ďurovcová, T., Šafránková, J., and Němeček, Z. (2019). Evolution of Relative Drifts in the Expanding Solar Wind: Helios Observations.

Solar Physics, 294(7):97.

4 A 1

3